PYRUVATE DEHYDROGENASE (PDH) DEFICIENCY

INTRODUCTION
Genetic defects in the pyruvate dehydrogenase (PDH) complex are among the most common causes of primary lactic acidosis and neurological dysfunction in infants and young children. Hence, PDH deficiency is one of the main causes of Leigh syndrome. Primary PDH deficiency is caused by mutation(s) in genes encoding subunits of the PDH complex, most commonly PDHA1. PDH deficiency has also been associated with defects in the PDH phosphatase, thiamine homeostasis, lipoic acid biosynthesis, and iron-sulphur cluster biosynthesis.

SERVICE
Dr Garry Brown leads a biochemical and genetic service for this group of disorders within our laboratory. Analysis of PDH enzyme activity in fibroblasts is typically the first step.

Dr Garry Brown can be contacted directly for further information about the service:
Email: garry.brown@ouh.nhs.uk; garry.brown@bioch.ox.ac.uk
Telephone: 01865 226027

Details of the main genetic testing options are also summarised under “Strategy” below.

This service is provided alongside our other mitochondrial disease services, and is NHS Highly Specialised Services (HSS) funded for NHS referrals from England and Scotland.

TESTING
- Diagnostic: Clinically affected patients
- Carrier or Presymptomatic: Relatives of clinically affected patients
- Prenatal: At risk of having an affected child

REFERRALS
- From Hospital Consultants, mainly Clinical Genetics, Neurology, Paediatrics, Metabolic Medicine
- Prenatal referrals are only accepted from Clinical Genetics and / or Prenatal Diagnosis. They must be discussed with the laboratory and arranged in advance.

STRATEGY
- PDH enzyme activity in cultured fibroblasts
- Appropriate genetic testing dependant on PDH enzyme activity and clinical information:
 - Sanger sequencing of PDHA1
 - Sanger sequencing of subunits of the PDH complex (PDHA1, PDHB, DLAT, DLD & PDHX)
 - Sanger sequencing of PDH regulation and co-factor biosynthesis genes (BOLA3, GLRX5, IBA57, LIAS, LIPT1, LIPT2, NFU1, PDP1, PDP2, SLC19A2, SLC19A3, SLC25A19, SLC25A26, TPK1)
 - Next generation sequencing (NGS) of all the above 19 genes

TARGET REPORTING TIMES
Routine diagnostic tests (high priority tests will be reported more quickly):
 - 112 calendar days NGS panel of 19 genes
 - 56 calendar days Sanger sequencing of specific genes
Carrier/Presymptomatic tests:
 - 14 calendar days
Prenatal testing (includes maternal contamination check): 3 calendar days

N.B. Details are correct for the date of printing only – last updated 14/07/2016